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Definition

A Simulation-Driven Optimization Problem:

[SD] min
c
f(c) =

∫ T

0

J(u(t), c)dt

where (u(t), c) solves:

d

dt
u(t) = H(u(t), c), t ∈ [0, T ]

H ≡ 0 for t < 0

Where H is a dynamic operator, and:

c ∈ Rn ,
u ∈ C1([0, T ]× Rn, U), for a state Hilbert space U ,

J : C1([0, T ]× Rn, U)→ R

Hence f : Rn → R
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Motivating Examples: Optimal Well Rate Allocation

Given a reservoir model, along with location of injection and production
wells, find the optimal well rates to maximize revenue

1Images courtesy of www.amerexco.com/recovery
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Motivating Examples: Optimal Trajectories

Find the optimal aircraft trajectory that minimizes fuel and/or time cost,
given path constraints

1B. Sridhar et al., “Aircraft Trajectory Optimization and Contrails Avoidance in the
Presence of Winds”

M. Enriquez Systemizing the Solution of SDOs – 6



Problem Computations Numerical Results

Claim

Despite the variety of problems we can pose, the (numerical) approach to
solving [SD] requires similar steps, executed by the same components!

Why not “abstract” these steps/interactions, and capture it in a
framework?

Benefits of “systemization”:

I Reduced code base

I Consistency checks

I Easily switch between computational strategies
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Solving the [SD]
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“Optimize-then-Discretize” (OtD)
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The Continuous Adjoint-State Method

Applying the optimality conditions to [SD], for t ∈ [0, T ]:

Continuous State Equation:

du

dt
= H(u(t), c) u(0) ≡ 0

Continuous Adjoint Equation:

dw

dt
= −DuH(u(t), c)∗w(t) + Ju(u(t), c) w(T ) ≡ 0

Gradient (w.r.t. L2 inner product):

∇f(c)(t) = DcH(u(t), c)∗w(t) + Jc(u(t), c)
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“Discretize-then-Optimize” (DtO)
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The Discrete Optimal Control Problem

Using a fixed time-stepping algorithm, the discretized analogue of [SD]:

[DSD] min
c

N∑
i=0

J [u(i), c]∆t

s.t. u(n+1) = u(n) + ∆t H̄(n)[u(n), c] n = 0, . . . , N

u(0) ≡ 0 ,

where H̄(n) is a (time-dependent) discrete dynamic operator. Note that
each u(n) ' u(tn) is called a (simulation/forward) state
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Adjoint-State Methods (ASM)

Applying the optimality conditions to [DSD]:

[A] w(n) = w(n+1) + ∆t (DuH̄
(n)[u(n), c]∗w(n+1) + Ju[u(n), c])

w(N) ≡ 0

The gradient can then be obtained through the following accumulation

∆t
∑
n

DcH̄
(n)[u(n), c]∗w(n) + Jc[u

(n), c]
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Visualizing the Adjoint-State Method

Introduce the forward grid (the grid used by the forward evolution) and
the adjoint grid (which will be used by the adjoint state method)

Note that [A] is dependent on state vector. Further, note that the state
vector must be accessed backwards
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Visualizing the Adjoint-State Method

Once we complete the reference simulation, we can begin the adjoint
simulation. Start with the adjoint state’s (given) final value:

w(N) = 0
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Visualizing the Adjoint-State Method

Then start the backward evolution by using the last adjoint state and a
corresponding forward state:

w(N−1) = w(N) + ∆t (DuH̄
(N−1)[u(N−1), c]∗w(N) + Ju[u(N−1), c])
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Visualizing the Adjoint-State Method

Iterate through this process ...

w(N−2) = w(N−1) + ∆t (DuH̄
(N−2)[u(N−2), c]∗w(N−1) + Ju[u(N−2), c])
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Visualizing the Adjoint-State Method

... to eventually generate all the adjoint states

w(0) = w(1) + ∆t (DuH̄
(0)[u(0), c]∗w(1) + Ju[u(0), c])
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TSOpt (“Time Stepping For Optimization”)

TSOpt is “middle-ware” written in C++, designed to aid solution of
simulation-driven optimization problems

TSOpt:

I abstracts commonalities among time-stepping methods

I provides a way for a simulation package to inter-operate with
optimization algorithms

I supports use of the adjoint-state method

Motivating observation: for every simulation driven optimization
problem, the solution process is (mostly) the same:

I reference, linearized and adjoint simulation execution order

I constructing needed data structures for optimization
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TSOpt (“Time Stepping For Optimization”)
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TSOpt’s Components

In TSOpt, we use Jet objects to perform various simulations.
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Inversion Software Construction

TSOpt’s modular structure minimizes the amount of code needed to
perform an inversion

User:

I provides TSOpt with a forward, linearized, and adjoint “step”

I provide a “State” class

TSOpt:

I arranges proper execution forward, linearized and adjoint simulation

I implements the Adjoint-State method to form gradients

Output can be passed to optimization software
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TSOpt and the Adjoint-State (AS) Method

Recall the ASM requires access to the reference simulation state history.
TSOpt implements the following to manage state storage:

I save all: save states as you forward simulate, access as needed
I Cost: A typical 3D RTM, O(TB)
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TSOpt and the Adjoint-State (AS) Method

I Griewank’s optimal checkpointing: rely on forward simulations,
and use stored simulation states as a starting point for evolution

I Recomputation Ratio = Total Number of Forward Traversals /N
I Cost: O(log(N)) recomputation, given a special distribution of the

states and a small amount of buffers
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Checkpointing, N = 10000
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Simulation Verification

In order to obtain meaningful results from inversion, one must guarantee
that the gradient is accurate

Gradient quality depends on the adjoint states, which depends on:

I linearization of the reference equations

I adjoint of the linearization

TSOpt is capable of the following simulation verification (unit) tests:

I derivative test: compare linearized simulation to finite difference
approximation (using reference simulation)

I dot product test: give the linearized simulation operator A, adjoint
simulation operator A∗ and random control x and random state y,
check 〈Ax, y〉 − 〈x,A∗y〉 (Fixed timestep only)
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Revisiting the Optimal Well Rate Allocation Problem

Given a reservoir model, along with location of injection and production
wells, find the optimal well rates to maximize revenue

1Images courtesy of www.amerexco.com/recovery
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The Optimal Well Rate Allocation Problem

The optimal well rate allocation problem can be written as:

max
qi i∈I∪P

f(q) =

∫ T

0

dt
∑
i∈P

αsoqi(t)︸ ︷︷ ︸
profit, oil produced

−
∑
i∈P

β

2
saq

2
i (t)︸ ︷︷ ︸

water production penalty

−
∑
i∈I

γqi(t)︸ ︷︷ ︸
cost to inject

,

where α, β and γ are scalar variables and the aqueous pressure p and
aqueous saturation sa solve the Black Oil equations:

0 = B

(
sa(t),

dsa
dt
, p(t), q

)
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The Black Oil Equations

I DE system that captures two-fluid inteactions in a porous medium
I Appropriate for low to moderate fluid flow

I Assumption: incompressible fluid and rock

−∇ · ( K(x)︸ ︷︷ ︸
abs. perm.

λtot(sa(x, t))∇p(x, t)) =

∑
i∈P

(1− sa)qi(t)δ(x− xi) +
∑
i∈P∪I

saqi(t)δ(x− xi)

φ(x)︸︷︷︸
rock por.

∂

∂t
sa(x, t)−∇ · (K(x) λa︸︷︷︸

phase mob.

(sa(x, t))∇p(x, t)) =

∑
i∈P∪I

saqi(t)δ(x− xi)
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Fully Discretized Problem
After using a Finite Volume method in space and Bwd. Euler in time:

min f̄(q) =

N∑
k=1

∆t J̄(k, s(k)a , q)

s.t. eT q = 0

qmin ≤ qi ≤ qmax

where s
(k+1)
a and p(k+1) solve:[

F (. . .(k+1) , q)
G(. . .(k+1) , q)

]
:=

[
q(k+1) −A(t)p(k+1)

D−1(q(k+1) −A(a)p(k+1))

]
=

[
0

s(k+1)
a −s(k)

a

k

]

where the matrices A(θ) and D are defined as:

Di,i = φi · |Ωi| Ti,j = cKi,j

A
(θ)
i,j = −Ti,jλθi,j Ai,i =

∑
j

Ti,jλθi,j
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The Adjoint Equations

Simultaneously solve for the adjoint variables w
(k)
s and w

(k)
p in the

following equation:

−w
(k+1)
s − w(k)

s

k
= DsF (. . .(k))Tw(k)

s −DsG(. . .(k))Tw(k)
p −∇sJ̄(. . .(k))

0 = −DpF (. . .(k))Tw(k)
s +DpG(. . .(k))Tw(k)

p

The directional derivative can then be obtained from the following
expression:

∇J(q)(k) = ∇qJ̄(·(k))−DqF (. . .(k))Tw(k)
s +DqG(. . .(k))Tw(k)

p
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Simulation Information

I SPE10 data for porosity and permeability (left)

I Location of Injecting/Producing Wells (right)

I Grid Cell Size: 10× 20 feet
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Reference Simulation Results
Saturation plot for t = 25 days
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Reference Simulation Results
Saturation plot for t = 50 days
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Reference Simulation Results
Saturation plot for t = 75 days
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Reference Simulation Results
Saturation plot for t = 100 days
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Reference Simulation Results
Saturation plot for t = 125 days
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Reference Simulation Results
Saturation plot for t = 150 days
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Reference Simulation Results
Saturation plot for t = 175 days
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Reference Simulation Results
Saturation plot for t = 200 days
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Inversion Information

Computational Software:

I Simulation: BlackOil simulator

I TSOpt to handle simulation execution, gradient construction

I Optimization: IPOpt, “Interior-Point Optimizer”

Inversion:

I Find optimal well-rate configuration over 200-day timespan
I Time step size: ∆t = 25d

I LBFGS Hessian approximation

I Globalization: Linesearch

I Wellrate bounds: [0, 20] bbl/day

I Initial guess: 10 bbl/day for all wells

I Stopping Tolerance: 0.10 (NLP Error)
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Objective Function
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Control History
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Conclusion

TSOpt: Modular C++ framework aiding inversion software construction

I Systemizes process of solving SDO problems by
encapsulating/automating common actions

I Reduces code required to successfully perform inversion

TSOpt Features:

I Easily switch between strategies for gradient formation

I Supports fixed and adaptive simulations

I Includes “sanity tests”: derivative and dot-product test
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Conclusion

Open question:

I Are there tests for the components which, if passed, would
guarantee the local solution of [SD] will be attained?

Read more about TSOpt:

I Tech Report:
http://www.caam.rice.edu/tech reports/2009/TR0933.pdf

I Doxy:
http://www.trip.caam.rice.edu/software/rvl . . .

. . ./tsopt/doc/html/index.html
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Questions?
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